Esta páxina da wiki da BGA wiki amosase en inglés porque non hai contido ainda na túa linguaxe. Síntete libre de creala!
For the rules of piraten kapern, see GameHelpPiratenKapern
Probabilities
Binomial formula
n! × pᵏ(1 − p)ⁿ⁻ᵏ k!(n-k)!
n: number of trails (dice thrown) k: number of successes (dice with a face value)p: probability of success (of a die face value)
Example
Probability of throwing 3 with 5 dice:
5! × (⅙)³ × (1 − ⅙)⁵⁻³ 3!(5-3)!
= 5×4×3×2×1 × (⅙)³ × (⅚)² 3×2×1 × 2×1
= 10 × (⅙)³ × (⅚)²≈ 0.0321 or 3.21%
2 dice
| In words | In maths | Percentage |
|---|---|---|
| Probability of no skulls | P(X = 0) = (⅚)² | ≈ 69.4% |
| Probability of one skull | P(X = 1) = 2 × (⅙) × (⅚) | ≈ 27.8% |
| Probability of two skulls | P(X = 2) = (⅙)² | ≈ 2.78% |
8 dice
| In words | In maths | Percentage |
|---|---|---|
| Probability of no skulls | P(X = 0) = (⅚)⁸ | ≈ 23.3% |
| Probability of one skull | P(X = 1) = 8 × (⅙) × (⅚)⁷ | ≈ 37.2% |
| Probability of two skulls | P(X = 2) = 28 × (⅙)² × (⅚)⁶ | ≈ 26.0% |
| Probability of three skulls | P(X = 3) = 56 × (⅙)³ × (⅚)⁵ | ≈ 10.4% |
| Probability of four skulls | P(X = 4) = 70 × (⅙)⁴ × (⅚)⁴ | ≈ 2.60% |
| In words | In maths | Percentage |
|---|---|---|
| Probability of one or more skulls | P(X ≥ 1)
= 1 − P(X = 0) = 1 − (⅚)⁸ |
≈ 76.7% |
| Probability of two or more skulls | P(X ≥ 2)
= 1 − [ P(X = 0) + P(X = 1) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ ] |
≈ 39.5% |
| Probability of three or more skulls | P(X ≥ 3)
= 1 − [ P(X = 0) + P(X = 1) + P(X = 2) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ + 28 × (⅙)² × (⅚)⁶ ] |
≈ 13.5% |
| Probability of four or more skulls | P(X ≥ 4)
= 1 − [ P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ + 28 × (⅙)² × (⅚)⁶ + 56 × (⅙)³ × (⅚)⁵ ] |
≈ 3.07% |
Esta páxina ven da wiki da BGA, e foi escrita pola comunidade de xogadores da BGA. Non dubides en editala!

